
www.manaraa.com

960 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

Inconsistency Management for Multiple-View
Software Development Environments

John Grundy, John Hosking, Member, IEEE,
and Warwick B. Mugridge, Member, IEEE Computer Society

Abstract—Developers need tool support to help manage the wide range of inconsistencies that occur during software development.
Such tools need to provide developers with ways to define, detect, record, present, interact with, monitor and resolve complex
inconsistencies between different views of software artifacts, different developers and different phases of software development. This
paper describes our experience with building complex multiple-view software development tools that support diverse inconsistency
management facilities. We describe software architectures we have developed, user interface techniques used in our multiple-view
development tools, and discuss the effectiveness of our approaches compared to other architectural and HCI techniques.

Index Terms—Inconsistency management, multiple views, integrated software development environments, collaborative software
development.

——————————���F���——————————

1 INTRODUCTION

OFTWARE developers work with a variety of specifica-
tions of software systems at differing levels of abstrac-

tion, including software requirements, analysis, design,
implementation and documentation. Inconsistencies be-
tween parts of a specification, or between specifications at
differing levels of abstraction, can arise during or between
phases of software development. Over time, such inconsis-
tencies must be resolved in order to produce a working
software system, or partially resolved to produce part of a
system for testing and quality assurance purposes. The use
of disparate software development tools on a project by
multiple developers is usually essential when developing
today’s complex software systems, but the use of such tools
can exacerbate the creation of inconsistencies [44], [53].

Systems have their specifications split among several dif-
ferent tools, often used by different developers, with partial
redundancy resulting. Modifying part of a system specifi-
cation in one tool can thus introduce inconsistencies with
related parts of the system specified in other tools, between
specifications shared by different developers, or even cause
inconsistencies to occur within the same tool. For example,
one developer modifying a class interface design in an
OOA/D tool will often cause other design diagrams in the
same tool to become inconsistent, and cause parts of the
system’s design held in other tools to become inconsistent.
It also may cause code based on these designs to become
inconsistent, and the designs to become inconsistent with
documentation and analysis diagrams developed by the

same or other developers. In a complex system involving
multiple developers and development tools, developers are
very often unaware of the introduction, or even existence,
of such inconsistencies.

The management of inconsistencies during a software
development project can be improved when the tools used
are tightly, or even loosely, integrated [53], [63], [27], [59]. In
such systems, developers interact with multiple “views” (or
perspectives) of software at the same and different levels of
abstraction. Developers will usually have views partitioned
into system requirements, analysis, design, implementation,
documentation etc, and further views partitioning specifi-
cations at each level of abstraction [29], [63], [53]. Inconsis-
tency detection is needed after one view is edited in order
to detect: structural inconsistencies between views (e.g.,
class attributes added in one view aren’t in another); se-
mantic inconsistencies in specifications (e.g., a type mis-
match between method calls or a nonexistent method is
called); inconsistencies between specifications at different
levels of abstraction (e.g., system requirements and design
conflict); and inconsistencies between the work of multiple
developers (e.g., when any inconsistency is caused by dif-
ferent developers working concurrently).

Some inconsistencies may be automatically corrected, for
example by tools updating the information in one view
when another, related view has been edited. However,
many inconsistencies cannot, or should not, be automati-
cally corrected. Hence mechanisms are required for tools to
inform developers of inconsistencies, and developers re-
quire facilities to monitor and resolve inconsistencies. As it
is usually impossible to keep a software system consistent
at all times, multiple view tools should not be overly pre-
scriptive in attempting to enforce consistency, except when
instructed to do so by developers. Tools thus need to sup-
port the long-term management of inconsistencies. Having
multiple developers adds to the complications of detecting,
presenting and tracking inconsistencies made by others,
and in negotiating resolutions to inconsistencies.

0098-5589/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� J. Grundy is with the Department of Computer Science, University of
Waikato, Private Bag 3105, Hamilton, New Zealand.
E-mail: jgrundy@cs.waikato.ac.nz.

•� J. Hosking and W.B. Mugridge are with the Department of Computer Sci-
ence, University of Auckland, Private Bag 92019, Auckland, New Zealand.
E-mail:  {john, rick}@cs.auckland.ac.nz.

Manuscript received 15 Sept. 1997; revised 13 Mar. 1998.
Recommended for acceptance by B. Nuseibeh and C. Ghezzi.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 107206.

S



www.manaraa.com

GRUNDY ET AL.:  INCONSISTENCY MANAGEMENT FOR MULTIPLE-VIEW SOFTWARE DEVELOPMENT ENVIRONMENTS 961

In this paper, we focus on managing inconsistencies
primarily between the analysis, design, and implementa-
tion specifications of software in multiple-view and multi-
ple-user integrated tools. Our main interest and contribu-
tions are in detecting structural, semantic, interperson and
interprocess inconsistencies as they occur, and allowing
developers to manage these. This contrasts with the kind of
“batch” inconsistency checking done by compilers. The
contributions of our work include:

•� an architecture for software development tools
which supports the representation of software speci-
fications, and the definition, detection, representa-
tion, and propagation of inconsistencies between
these specifications

•� the realization of this architecture in frameworks and
tool generators for constructing multiple-view and
multiple-person software development tools

•� techniques for presenting inconsistencies to developers
•� techniques that allow developers to monitor, negoti-

ate and resolve inconsistencies
•� tool configuration support allowing software devel-

opers to configure their environment’s inconsistency
management policies

•� a range of exemplar software development tools built
using our architectures that have been deployed on a
variety of small- and medium-sized projects and
which demonstrate the utility of our techniques.

We begin with a description of various inconsistency
problems which can arise in multiple view, multiple user
environments. These problems are illustrated with an inte-
grated software development environment that we have
developed. We then discuss a range of existing techniques
and systems that attempt to address some of these incon-
sistency management issues in software development tools.
Section 4 describes our inconsistency management model,
the software architecture that realizes this model, and meta-
tools we have developed to aid in the construction of soft-
ware development tools. Section 5 provides a user’s per-
spective on our approaches to the presentation of inconsis-
tency, while Section 6 describes how a user can interact
with such presentations to monitor and/or resolve them.
Section 7 discusses inconsistency management during col-
laborative software development. Section 8 argues that in-
consistency management configuration facilities are neces-
sary and shows how they can be supported. Section 9 de-
scribes our experiences with our inconsistency manage-
ment techniques and tools, and evaluates them. We con-
clude with the contributions of this research and directions
for future work.

2 PROBLEM DOMAIN: INCONSISTENCIES IN
MULTIPLE-VIEW ENVIRONMENTS

2.1 An Example Multiple-View Software
Development Environment

To illustrate the range of inconsistency management re-
quirements of a multiple view software development envi-
ronment, we introduce SPE (Snart Programming Environ-
ment). SPE is an integrated software development envi-

ronment for developing object-oriented programs [27]. It
supports multiple textual and graphical views of informa-
tion, with full bidirectional consistency management be-
tween all views. For example, the same artifact can be
viewed in several analysis, design, code, and documenta-
tion views, as illustrated by the “customer class” specified
in Fig. 1 in views “root class” (OO design diagram) and
view “customer-class Interface” (textual class interface
code). We have integrated SPE and the Serendipity software
process modeling and enactment environment [34] to sup-
port coordinated multiple-user software development in
SPE. Fig. 1 shows a simple software process for modifying a
system design enacted in Serendipity (“aff2. Design, Code
& Test-subprocess”).

As information is shown in multiple views in SPE, and
at differing levels of abstraction, a range of inconsistencies
can occur when modifying different views of software
specifications. For example, renaming a class in an OO de-
sign view means all other analysis, design, implementation
and documentation views become inconsistent unless the
class name is changed in these views. Such a change could
be carried out automatically by SPE. However, adding a
method call connection in an OO design view cannot be
automatically added to the appropriate textual code view(s)
affected by this change, so the code views become incon-
sistent. SPE has no way of determining appropriate argu-
ments to pass to the method, nor where in the textual code
the method call should go. Similarly, changing the type of
an attribute in a design view may allow some degree of
automatic resolution, but often requires developers to
change other design and/or implementation decisions.

When multiple developers share SPE views, they some-
times want to collaborate closely to analyze and negotiate
about inconsistencies and how these should be resolved.
Thus collaborative editing techniques are required to fa-
cilitate close collaboration and inconsistency management.
However, at other times developers will work independ-
ently, modifying alternative versions of views. Any incon-
sistencies generated require tracking, and then negotiation
and resolution, usually during version merging.

Fig. 1 shows a few examples of how inconsistencies are
managed in SPE: (1):

1)� Icons in views can be highlighted to indicate the pres-
ence of inconsistencies.

2)� Inconsistency “descriptions” can be presented to de-
velopers in dialogues or within views to inform
them of inconsistencies. Such descriptions may sim-
ply describe changes made to other views which af-
fect the specification shown in the view, or may de-
scribe semantic constraint violations that need to be
resolved. Presentations may also allow developers to
“interact” with the inconsistency, for example to se-
lect an inconsistency and request more information
about it or request a view be automatically modified
to resolve the inconsistency.

3)�“Histories” a) of changes made to software specifi-
cations and b) during process stage enactment are
kept, which also record and present semantic incon-
sistencies (e.g., type mismatches, undefined vari-
ables and methods), and allow tracking of and inter-
action with inconsistencies.



www.manaraa.com

962 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

4)� Inconsistency descriptions presented to developers
can be annotated with extra information e.g., relative
importance, additional reasons why it has been de-
tected, and Serendipity process model information.

2.2 Inconsistency Management Requirements
From our experience with developing SPE and many other
multiple-tool and multiple-user environments [71], [29] we
have developed several key requirements for supporting
inconsistency management in such tools:

•� Description of syntax and semantics. The software ar-
chitecture used to build such an environment must
support the representation of a wide range of soft-
ware specification and view structures and the se-
mantics associated with these structures.

•� Inconsistency detection. Inconsistencies must be de-
tected when: 1) software specifications are modified
and related specifications cannot be automatically
updated to be kept consistent; 2) semantic con-
straints associated with modified software structures
are violated in some way; or 3) the work of multiple
developers interferes, causing structural or semantic
inconsistencies.

•� Inconsistency representation. As inconsistencies may
range from short-lived to very long-term, ways are
needed to represent such inconsistencies, propagate
them among related software specifications, and rec-
ord them for monitoring and later resolution.

•� Inconsistency reason information. Inconsistencies occur
for a reason. Associating the reason for a change can
help a user in dealing with that inconsistency, espe-

cially when it was made by someone else and/or at a
different time. This might simply be that a change has
been made to an overlapping software specification
[22], and hence the change needs to incorporated in
some way in all other affected specifications, or a se-
mantic constraint has been violated, or another devel-
oper has made a change. The representation of incon-
sistencies used by an environment needs to support a
description of: what was changed or what constraint
was violated; who caused inconsistencies; the process
stage or “context” inconsistencies occur in; reasons
inconsistencies are detected; and the relative “impor-
tance” of inconsistencies, including during what
phases of development an inconsistency can be “tol-
erated” before being resolved.

•� Inconsistency presentation. Developers need to be in-
formed of the presence of inconsistencies when using
views and need to be provided with a variety of in-
formation about inconsistencies.

•� Inconsistency monitoring. Developers need to monitor
inconsistencies at different times and in different
ways, and thus require facilities to query for specific
kinds of inconsistencies and to have these presented
appropriately.

•� Inconsistency interaction and resolution. Developers
need to interact with inconsistency presentations to
locate their causes, gain more information about them
and resolve them.

•� Inconsistency resolution negotiation. Multiple develop-
ers require support for negotiating the resolution of
inconsistencies affecting more than one person.

Fig. 1. An example multiview editing environment.



www.manaraa.com

GRUNDY ET AL.:  INCONSISTENCY MANAGEMENT FOR MULTIPLE-VIEW SOFTWARE DEVELOPMENT ENVIRONMENTS 963

•� Inconsistency management configuration. Developers re-
quire facilities to configure when and how inconsis-
tencies are detected, monitored, stored, presented,
and possibly automatically resolved.

3 RELATED RESEARCH

Many software architectures have been developed to aid in
building tools that provide multiple views of software de-
velopment. However, none that we are aware of completely
support the range of inconsistency mangement require-
ments outlined in the previous section.

Database views and active constraint tiggers can be used
to build multiple-view systems where the views are in-
formed of changes to model objects and requery the model to
update the view’s state [53], [1]. For example, MELD [42] and
MultiView [1] use a form of database views to support mul-
tiple views for software tools. Unidirectional constraint sys-
tems, such as Garnet [54], Clock [25], Zeus [12], and those
built on top of database management systems, use constraint
rules between software specification components which,
when triggered, automatically update affected structures or
flag the presence of inconsistencies. Multidirectional con-
straint systems, such as Rendezvous’s Abstraction-Link-View
[38] and Amulet [55], use more flexible interobject constraints
allowing changes made to repository or view specification
objects to maintain view consistency.

All of these trigger and constraint-based approaches use
logical constraints and queries over model and view ob-
jects, and are thus able to readily detect structural and se-
mantic inconsistencies. They do not, however, represent
resulting inconsistencies without using objects or relations
to model them, nor are they able to readily associate extra
information with inconsistencies. For example, FormsVBT
[6], built with Zeus, supports multiple textual and graphical
views of user interface specifications and simulations,
which are kept consistent under change. While FormsVBT
successfully manages to keep views consistent, the authors
admit their techniques used do not scale up to more general
software specification views, and lack more general incon-
sistency management facilities [6].

Smalltalk Model-View-Controller [46] and Java-style Ob-
server [24] models support the notion of views of data
structure objects, with the ability to propagate objects de-
scribing model object changes to observing objects. These
“change” objects can be used to represent a range of incon-
sistencies, and extra information about inconsistencies.
However, the architectures lack any application-independent
approaches to generating such inconsistency representation
objects, and many systems using these architectures simply
rely on view objects to reconcile their state to their model
objects i.e., using model change notifications as simple event
triggers. This severely limits the kinds of inconsistency man-
agement that tools can provide to software developers. The
ItemList structure [14] and Object Dependency Graphs [74]
both use objects to represent structure changes in their inter-
view propagation mechanisms. However, these objects are
only used to reconcile viewing object structures to their
models, and to implement undo/redo and hierarchical
change propagation mechanisms. They do not support pres-

entation or monitoring of longer-term inconsistencies. The
View Mapping Language (VML) [2], which primarily uses
constraints to map changes between schema views, could be
extended to provide some of these capabilities, with objects
representing interview inconsistencies.

FIELD [63], [64], and its successors, such as DECFUSE
[37], use selective broadcasting to propagate messages
about tool events between multiple Unix tools. Limited
forms of view consistency are supported by FIELD, and
building such environments and integrating new tools into
the environment requires much effort [53]. CSCW toolkits,
such as Groupkit [66], which uses a similar approach to
FIELD for informing multiple users’ views of changes, also
lack the range of inconsistency recording and presentation
facilities required. CORBA-based multiple-view tools, such
as those proposed by Emmerich [16], [18], may provide
appropriate capabilities, by using combinations of remote
object change broadcasting and shared data access for inte-
grated tools. GTSL [17], [19] supports the generation of in-
cremental consistency evaluation algorithms for tools by
utilizing document schemas and semantic relationship
specification. GSTL also supports versioned documents and
concurrent tool interactions, allowing tools to support dif-
ferings levels of granularity and user coupling for coopera-
tive editing. While GSTL-generated environments, such as
an integrated SEE for British Aerospace [5], support power-
ful cooperative work, configuration management and in-
terdocument dependency management facilities, they lack
the range of short- and long-term inconsistency presenta-
tion, monitoring and interaction capabilities of tools like
SPE. A few systems directly provide inconsistency man-
agement support, where multiple views need to be incon-
sistent for some time, but this inconsistency needs to be
recorded and resolved at a later date. An example is [21],
which uses logic predicates to record inconsistencies be-
tween different viewpoints on software designs.

Some software development tools, such as Mjølner envi-
ronments [49], take the approach of preventing tool users
from representing software artifacts in multiple views at all,
therefore theoretically limiting possible inconsistency man-
agement problems. However descendants of Mjølner-based
systems for multiple-user software development [50] have
introduced simple inconsistency presentation and high-
lighting techniques to support version control and multiuser
editing. PECAN [61], Garden [62], and Dora [59] all support
multiple views of software artifacts, kept consistent via
MVC-style object observation or database triggers. While a
rich range of views is supported by these environments, they
provide limited support for managing long-term inconsis-
tencies between views. They also rely on structure-oriented
editing techniques in order to keep views consistent, which
lack favour with software developers [4], [73]. The Cornell
Program Synthesizer [65] uses constraint expressions to pres-
ent semantic inconsistencies to developers in views of soft-
ware artifacts, which can potentially exist for long periods,
but these cannot be interacted with nor be grouped.

Most CASE environments use the notion of a repository,
with database view mechanisms to keep multiple views of
artifacts structurally consistent, and triggers and queries to
detect semantic inconsistencies [23]. For example, Software
thru Pictures™ [72], [40], uses a Sybase™ database, Eiffel-



www.manaraa.com

964 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

CASE™ [41], uses persistent Eiffel objects, and Rational
Rose™ [60], uses files. Inconsistencies detected by con-
straint triggers are acted on immediately and queried in-
consistencies may lack information about the context (such
as part of the software process) a change was made in, who
made the change, when it was made, and why it was made.
As inconsistencies detected by triggers or querying are gen-
erally not represented and stored in the tool repository, in-
consistency representations cannot be annotated with addi-
tional information about them at the time they are gener-
ated and stored for monitoring.

CASE tools generally use reverse engineering and merg-
ing tools to reconcile modified CASE and code views [41],
[40]. They often require separate configuration management
and shared repository tools to enable collaborative develop-
ment. For example, Rational Rose™ uses a separate product,
ClearCASE™, to maintain shared CASE documents via a
configuration management tool with checkin/checkout poli-
cies [60]. A similar approach is taken in EiffelCASE™ [41],
and Software thru Pictures™ [40]. This approach delays the
detection of inconsistencies between design and code views
and thus fails to provide immediate feedback to developers
when such inconsistencies occur. This often leads to many
inconsistencies between design and implementation views
of a system that require a large effort to resolve later. Object
Team™ [13] utilizes a repository with built-in configuration
management, continually synchronizing design and code
artifacts. This approach leads to intolerance of partial in-
consistency between developers, which can greatly hinder
useful parallel design and development exploration [21].
The increasing need for a range of multiuser support facili-
ties in CASE tools [45] also means that architectural ap-
proaches which better facilitate the management of multtool
and multiperson inconsistencies, such as selective broad-
casting, CORBA-style remote notification and process-
centered support, need to be used.

Meta-CASE tools usually provide some degree of sup-
port for generating multiple-view supporting CASE tools.
MetaEDIT+ [43] and MultiView [1] provide limited view
consistency management, based on database views. Meta-
View [67] provides view inconsistency management using
constraints, with basic facilities to allow developers to
monitor, group or interact with inconsistencies. They do not
support the annotation of inconsistency information with
context that can aid the user in understanding the reasons
for a change. KOGGE [15] generated tools use a database
with active object views to keep multiple viewpoints con-
sistent at all times, with no tolerence for inconsistency.

Process-centered environments allow software develop-
ers to plan and coordinate their use of multiple tools and
work on multiuser projects. Oz [11] and Merlin [57] use
rule-based approaches to describing process models, and
Oz utilizes “enveloping” to integrate other tools with the
process-centered environment [70], but do not provide
management of inconsistency representations generated by
integrated tools [51]. TeamWARE Flow [69], Action
Workflow [52], and Regatta [68] use more developer-
accessible, graphical process modeling languages, and pro-
vide simple interfaces to coordinating third-party software
development tools, but do not manage inconsistencies.

SPADE [8], ProcessWEAVER [20], and ADELE/TEMPO [10]
provide more sophisticated facilities for integrating third-
party tools, with some inconsistency management, event
handling and constraints applicable to integrated tools.
However, the degree of integration means only basic incon-
sistency monitoring can be facilitated, and inconsistency
presentation and interaction within integrated tools is not
supported [9]. The process modeling and enactment ap-
proach of [47] has been used to coordinate multiple view
usage [58], allowing developers to specify how inconsisten-
cies detected in multiple view tools can be handled.

4 INCONSISTENCY REPRESENTATION USING CPRGS

The first four inconsistency management requirements we
identified in Section 2.2. relate to the ability of software de-
velopment tools to adequately represent software specifi-
cations and to detect and represent inconsistencies. As ex-
isting software architectures do not support all of these in-
consistency management requirements, we have developed
a new software architecture, Change Propagation and Re-
sponse Graphs (CPRGs), for managing inconsistencies in
multiple view software development tools [29]. We first
motivate the need for this architecture and explain its de-
sign rationale, with a simple example of its use for incon-
sistency management. We then describe the realization of
this architecture in tools which support the construction of
CPRG-based environments.

4.1 A Model for Inconsistency Management
Software specifications consist of a wide variety of “soft-
ware artifacts” i.e., different kinds of information about
software which together comprise a full (or partial) system
specification at various levels of abstraction. Some of these
artifacts are structured, textual or graphical documents,
while others are more loosely structured. Graph-based
structures tend to suit the representation of fine-grained
software artifacts, such as abstract syntax trees and graphs
for diagrams and code [4], [65], [7]. However, in order to
produce efficient environments which can make use of ex-
isting tools, such as text editors, coarse-grained representa-
tions of parts of software specifications, such as the code
associated with a class method, can also be represented as a
single “artifact” [27], [59].

The CPRG software architecture is based on a graph-
based representation for software artifacts, with attributed
components linked by intercomponent relationships. CPRG
components can represent small, fine-grained software arti-
facts, such as classes, attributes, methods, etc. They can also
represent coarser-grained artifacts, such as entire class inter-
faces, third-party tool documents, such as MS Word™ files,
and interfaces to third-party tools and databases. Multiple
views of software specifications are built with CPRGs using
“view components,” with these view components related to
“base” (i.e., repository) components via “view relationships.”
This is illustrated in Fig. 2 with a class method shown in two
different views (one a graphical design view, the other a
textual code view). The top windows are graphical and tex-
tual views with which the user interacts. The middle layer is
a CPRG representation of these views, and the bottom layer
is the repository of the environment containing a CPRG de-
scribing all software specification information.



www.manaraa.com

GRUNDY ET AL.:  INCONSISTENCY MANAGEMENT FOR MULTIPLE-VIEW SOFTWARE DEVELOPMENT ENVIRONMENTS 965

Changes to graph structures representing parts of a soft-
ware specification lead to inconsistencies when:

1)� related structures that share updated information are
not changed, e.g., multiple views of a changed com-
ponent are not appropriately updated;

2)�  semantic constraints on components are violated e.g.,
a class trying to use a method in another class uses
the wrong number or type of arguments; and

3)� specifications updated by one developer become in-
consistent with those of other developers.

CPRG components and relationships are used to embody
both the structure of software specifications and the semantic
constraints within and between parts of specifications. When
these detect that related components have changed, they
carry out structural or constraint checks for inconsistency.
Some CPRG components may embody only structure or only
semantic constraint information, but often many embody
both. When developing CPRGs, we chose not to introduce
specialized kinds of relationships for e.g., structural relation-
ships vs. semantic constraints, in order to keep the model

simple but also to ensure a homogeneous approach to han-
dling both structural and semantic inconsistencies.

The state of a CPRG component is modified by an opera-
tion. When an operation changes the state of a component,
objects describing this state change, called change descriptions,
are generated. Change descriptions generated by a compo-
nent are propagated to all conected CPRG relationships,
which then decide to forward the change to other compo-
nents, act on the change, or ignore it. If related structures are
not updated to reflect the changed state of the modified
component, change descriptions indicate structural incon-
sistencies. Change descriptions are also used to represent
semantic inconsistencies, by having change descriptions gen-
erated when constraint violations are detected. Components
generating or receiving change descriptions can also anno-
tate them with extra information, such as the time and date
the inconsistency occurred, the developer who caused it,
what process model stage was enacted when it occurred, the
relative importance of the inconsistency, or any other addi-
tional reason for this inconsistency being represented.

Fig. 2. An example of inconsistency management using CPRGs.



www.manaraa.com

966 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

Change descriptions can be grouped with components to
“record” the presence of inconsistencies associated with
these components. These groups of change descriptions can
be browsed by users and searched and acted on by software
development tools. For example, the history components in
Fig. 2 are used to record the modification history of views
and repository-level classes.

An additional reason for using change description ob-
jects, rather than constraints or traditional model-view
change notification, is the homogeneous solution change
descriptions provide for inconsistency management, track-
ing and versioning component changes, and collaboration
support [29], [30]. Change description storage supports the
formation of “modification histories” which track changes
that components have undergone. In the Serendipity proc-
ess modeling environment we also associate groups of
change descriptions from software artifacts with enacted
process stages, showing the history of work done for each
stage when it was enacted [34]. CPRG change descriptions
representing state changes can also be reversed to “undo”
these state changes, or reapplied to repeat the state changes.
This combination of recording changes in groups and
undo/redo supports “deltas” for each component, sup-
porting a basic versioning mechanism. Change description
objects can also be serialised and broadcast between users’
CPRG-based environments, facilitating a range of collabo-
rative work facilities [31].

Fig. 2 illustrates an example use of CPRG change descrip-
tions to support inconsistency management in SPE. The name
of a method in a class diagram is modified by the user 1), re-
sulting in a change description being generated. This change
description is propagated to the view and stored in the view’s
modification history, and propagated to the method view
components’s view relationship, which automatically updates
the repository method component 2) to remove the structural
inconsistency between repository and view. A change descrip-
tion resulting from this update of the base method component
is generated 3), and then propagated to all related components
interested in changes to the base method 4). If guiding soft-
ware development in SPE with a Serendipity process model,
the change description will also be annotated by Serendipity
with information about the developer and enacted process
stage. The view relationship informs all other views of this
base component of its state change, 5), and views are either
fully or partially updated or inconsistencies recorded and pre-
sented to the user, with affected view components highlighted.
Classes which use this method check semantic constraints on
the usage 6). If the change to the method causes their use of it
to become invalid e.g., their code calls the wrong name, or
wrong arguments, a semantic change description is generated.
If the user has specified this kind of inconsistency is important,
the change description will be annotated with e.g., a “me-
dium” importance indicating the developer must correct the
change before the system can be compiled, or a “high” im-
portance indicating the inconsistency should be resolved very
soon. The owning class of the updated method is informed of
its state change, and records the change description in its
modification history 7), tracking all changes to the class. The
original change description generated by the view component

update can be broadcast to other developers sharing the edited
view, to support a variety of collaborative editing and version
merging facilities.

4.2 A Software Architecture and Support Tools for
Realizing the CPRG Model

We have developed object-oriented class frameworks and
an environment generator to allow software tool developers
to use the CPRG architecture to develop multiview, multi-
user environments. We have used these frameworks and
generator to construct several exemplar development tools
and environments exhibiting a range of inconsistency man-
agement facilities.

4.2.1 MViews and Serendipity
Our first realization of CPRGs was the MViews class
framework for building multiview editing environments
[30]. We chose an OO framework approach to enable tool
developers to reuse the basic CPRG functionality via in-
heritance and composition of CPRG-implementing classes,
and then extend this basic functionality for use in their own
tools by writing additional, application-specific code. We
built a range of specialized classes for MViews that extend
the basic CPRG model. These provide abstractions for
building multiple view representations of software artifacts,
a variety of intercomponent relationships, a variety of
graphical and textual editor building-blocks, and support
for collaborative work in MViews-based tools.

We implemented MViews in Snart, an object-oriented
Prolog extension [26]. We chose to represent change de-
scriptions in our Snart implementation of MViews as Prolog
terms, rather than Snart objects, for speed of generation,
propagation and storage. Change description terms in our
MViews implementation represent CPRG component state
changes and constraint violations, with a Prolog list ap-
pended to enable the annotation of change descriptions
with additional information about inconsistencies. Collabo-
rative view editing and version sharing is supported by
broadcasting serialised terms between users’ environments
and annotating change descriptions with user names. Snart
is a persistent language, with objects dynamically saved
and loaded to a persistent object store, making information
repository and view persistency management transparent
for environment implementors.

In MViews-based environments, such as SPE, it became
apparent that users require additional “work context” in-
formation about inconsistencies, and for inconsistencies to
be grouped not only by affected artifacts but also by user
and the context in which the inconsistency arose. We chose
to “capture” additional reasons about inconsistencies (and
software artifact modifications in general) by using soft-
ware process model information to annotate MViews
change descriptions with user, time and date, process
model stage, and reason for stage enactment information.
This led to the development of the Serendipity process
modeling environment, and integration of Serendipity and
MViews-based environments [31], [34]. We modified
MViews so that any change descriptions generated by view
components or base layer components are forwarded to
Serendipity (if in use), and these change descriptions are
annotated with enacted process model information. They



www.manaraa.com

GRUNDY ET AL.:  INCONSISTENCY MANAGEMENT FOR MULTIPLE-VIEW SOFTWARE DEVELOPMENT ENVIRONMENTS 967

are also copied and stored against the enacted process
model stage to facilitate grouping of inconsistency repre-
sentations and modification histories with process model
stages in Serendipity. Fig. 1 shows examples of annotated
change descriptions in SPE, and also stored change de-
scriptions originating from SPE modifications stored
against a Serendipity process model stage.

4.2.2 JViews, Jcomposer, and Serendipity-II
We built many multiple-view, multiuser software develop-
ment environments with MViews. However, MViews-based
environments suffer from slow performance due to the
Prolog implementation of MViews, difficulties in integrat-
ing third-party tools not built with MViews, and a large
amount of effort required by developers to implement
MViews-based tools. This led to the development of JViews,
a Java-based implementation of CPRGs, which uses and
extends the Java Beans change notification mechanism to
represent change descriptions and support change descrip-
tion propagation [33]. JViews is an object-oriented class
framework with similar capabilities to MViews, but its ar-
chitecture is much more open for tool development and
integration. JViews uses the Java Beans componentware
API to allow events from third party tools to be represented
and used within JViews environments, and to be able to
send instructions to third party tools which provide com-
ponent-based interfaces. A variety of components support-
ing collaborative view editing, component persistency and
repository management, and software artifact representa-
tion are provided by JViews. JViews does not currently use
a common architecture for distributed object management,
such as CORBA. However, we are investigating use of the
remote object change notification mechanism in CORBA for
representing change descriptions and their propagation for
JViews-based environments.

To reduce development effort with JViews, one of our
first JViews-based environments was JComposer, a tool for
specifying CPRG-based environments and generating
JViews-based implementations [33], [35]. We decided to
generate JViews implementations of tools rather than inter-

pret JComposer specifications to ensure efficient, stand-
alone and interoperable tools would result. Fig. 3 shows an
example of part of the specification of the Serendipity-II
process modeling tool, a reimplementation of Serendipity
using JComposer and JViews. The JComposer view on the
left shows part of a specification (which uses the CPRG
notation) being developed. A view from the generated en-
vironment running is shown on the right. Serendipity-II can
be used to provide a context for inconsistencies in JViews-
based environments, in the same manner as Serendipity
does for MViews-based environments.

5 QUERYING AND PRESENTING INCONSISTENCIES

Any environment supporting multiple views needs to ei-
ther automatically resolve view inconsistencies or to in-
form developers of unresolved inconsistencies [53], [61],
[63]. Often inconsistencies between multiple views can be
automatically resolved by modifying the state of one or
more views to reconcile them to the modified state of
other views. An initial consideration is whether a change
description can and should be automatically applied to a
view receiving the change to rectify the inconsistency it
represents. An example where this is possible is the re-
naming of a class in an SPE class diagram, which is easy to
propagate to and automatically effect in other class dia-
grams showing the class. CPRG-based environments
readily support this behavior by having response methods
in the components that receive change descriptions pat-
tern match against received changes and perform actions
to rectify inconsistencies. SPE uses this technique exten-
sively for maintaining graphical view consistency. Many
existing multiple-view software development systems
support only this level of view consistency management.
If a change can be directly made to another affected view,
it is performed by the environment. If it cannot, it is ig-
nored and the user of the environment is usually never
informed of a potential inconsistency.

Fig. 3. An example of the JComposer tool and the generated Serendipity-II in use.



www.manaraa.com

968 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

Just because an inconsistency can be automatically recti-
fied it is not necessarily the case that it should be. For ex-
ample, a far-reaching change made by an inexperienced
colleague may be better handled as an inconsistency that is
presented to other developers. In addition it is often im-
portant to track that an inconsistency occurred and that it
was automatically resolved by the environment. Thus in
SPE we have chosen to have all changes to a view or a
component recorded in modification history lists, able to be
reviewed using the techniques described in the following
sections. For any important changes which are automati-
cally resolved by an environment, it is also often useful to
highlight the change after it has been made, to draw devel-
opers’ attention to it. For example, in SPE changes such as
renaming classes and methods may be partially automati-
cally resolved between views, but the changed items in
views are highlighted.

5.1 Highlighting the Presence of Inconsistencies
CPRG-based environments inform components of the possi-
ble presence of inconsistencies by propagating change de-
scriptions to them, and record the presence of such inconsis-
tencies by associating change descriptions with them. These
environments must then inform developers that such incon-
sistencies have been detected, either in a “context-dependent
way” (e.g., indicating what they affect in the views with
which developers are interacting), or in a “context-
independent way” (e.g., by grouping and presenting related
inconsistencies together). Highlighting parts of a view sup-
ports a basic “context-dependent” approach to informing
developers of inconsistencies which affect the view.

A variety of techniques can be used to highlight the
presence of inconsistencies, including shading and coloring
graphical icons, changing text font characteristics, or
blinking affected icons. Annotating the name of a view’s
window, or the values of text displayed in the view are also
often appropriate and easily implemented. Many of these
techniques are equally applicable to textual and graphical
views, and many can be usefully combined. The choice of
technique often depends on how developers can most ap-
propriately be informed of the presence of different kinds of
inconsistencies. For example, inconsistencies which need
quick resolution to allow software development to proceed
should be immediately presented so that developers readily
notice and act upon them. Inconsistencies which can be
tolerated for longer periods, or which do not have a large
impact on the information displayed in a view, are usually
more effectively presented in less dramatic ways, or may
even be highlighted only when requested by developers.

As a simple example, consider the screen dump from the
dialogue definer of SPE in Fig. 4. This shows three views of
a dialogue under design, a graphical drag-and-drop com-
position (dialog1-dialogue), a textual specification (dialog1-
Dialog Predicate) and an example of the running dialogue.
In this example, the ‘Ok’ control button in the graphical
view has been shifted, resulting in a semantic constraint
that dialogue components not overlap the dialogue border
being violated. A change description has been generated
representing this inconsistency and associated with the
dialogue view’s Ok button component. Such an inconsis-

tency must be resolved before the dialogue specification
can be used. Thus SPE immediately indicates the presence
of such semantic inconsistencies by shading the Ok button
icon, to highlight it. This technique could be used in combi-
nation with other context-dependent inconsistency presen-
tation approaches, such as boldening the textual Ok button
specification in the right-hand view, renaming the views to
e.g., “dialog1-dialogue (error)” to indicate the view has an
inconsistency, etc.

5.2 Textual Presentation of Change Descriptions
While the presence of inconsistencies can be indicated in a
variety of ways, developers often need more information
about them. For example, a developer may not understand
why the Ok button in Fig. 4 has been highlighted and wants
to view more information about the inconsistency this indi-
cates. As described in Section 4, change descriptions may
embody a wide variety of information about an inconsis-
tency. Textual forms of change descriptions can be pre-
sented to developers by inserting them into views or dis-
playing them in pop-up menus and dialogue boxes. An
important characteristic of all CPRG change descriptions is
that the inconsistency information they embody can be
“unparsed” and viewed in a textual, human-readable form.

For example, Fig. 5 shows the textual forms of several
change descriptions from SPE indicating:

1)� the addition of a method to a class in SPE;
2)�a semantic error denoting an unknown method is

being called; and
3)�an annotated analysis change.

For change description #1, additional information from Ser-
endipity has been used to annotate this particular change
description, i.e., the process stage (aff.2.1:Design
Changes) and developer making the change (judy). This
annotation allows users to determine the reasons the
change was made or inconsistency detected, who caused
the inconsistency, and so on. For change description #2, the
“importance” of the semantic inconsistency is indicated
with the three stars prefixing the description. For change #3,
an additional annotation indicating the change was made in
an analysis diagram has been added, indicating that when
this change description presentation is viewed for design
and/or code views, the change needs to be appropriately
propagated to specifications at these levels of abstraction.

5.3 Grouping of and Querying for Inconsistencies
Change descriptions can be grouped and associated with
various CPRG components they affect. Such grouped
change descriptions provide an underlying “database” for
querying about inconsistencies. By applying selection op-
erations on this database, collections of change descriptions
relating to a particular component, view, process stage, or
inconsistency type can be constructed, and then appropri-
ately presented to the user.

For example, SPE keeps histories of modifications and
semantic constraint violations for all class components and
views, but also records groups of all constraint violations,
unresolved “interspecification” changes (e.g., design changes
affecting code and vice versa), inconsistencies resulting from
version merging, and changes by Serendipity process stage.



www.manaraa.com

GRUNDY ET AL.:  INCONSISTENCY MANAGEMENT FOR MULTIPLE-VIEW SOFTWARE DEVELOPMENT ENVIRONMENTS 969

These groups of stored changes are then used to create a va-
riety of change and inconsistency presentation lists for users
to interact with. Fig. 1 shows two such lists, one for a Seren-
dipity process stage, and one for an SPE artifact (class cus-
tomer). Each change description in the lists is displayed in
textual form, annotated by a sequence number indicating the
order they were generated. Developers can also configure
environments constructed with our CPRG-based tools to
record inconsistencies in user-specified ways (see Section 8).

An example use of presenting grouped inconsistencies is
shown in Fig. 6. Changes made to an SPE class are shown,
with some changes having been translated from changes
made to a same-named EER entity [71]. Items in this change
history list highlighted with a ‘*’ were actually made in the
EER view and translated into OOA/D view updates. The
user can make further changes to the OOA/D view if the
EER update could only partially be translated into an
OOA/D view update i.e., an internotation translation in-
consistency occurred. For example, adding an EER relation-
ship (change #8) was translated into the addition of an
OOA/D association relationship (change #9). The user then
refined this relationship to an aggregation relationship
(change #10). This could not automatically be done, as the
EER notation does not support the distinction between dif-
ferent kinds of relationships. This technique of presenting
inconsistencies between design notations in a textual list is
combined in SPE with highlighting the presence of possible
internotation inconsistencies by shading icons in a view
affected by changes to another notation view [71].

5.4 Displaying Inconsistency Representations in
Views

One application of grouped change descriptions commonly
used by our tools is to present currently outstanding incon-

sistencies by annotating the contents of views. That is,
rather than just highlighting view components to indicate
the presence of inconsistencies, inconsistency descriptions
are inserted into the view. This provides more immediate
information to the user than simply indicating which parts
of a view are inconsistent. We achieve this either by insert-
ing textual descriptions of change descriptions directly into
a textual view or by adding pop-up menu items to a view
where such textual descriptions can be readily accessed.
Care must be taken to ensure these descriptions are put into
a logical place for developers to access, and to distinguish
them from actual software artifact specifications. We have
found specially distinguished comment areas for textual
specifications and pop-up menu handles for graphical
views most appropriate.

For example, Fig. 7 shows an SPE class interface view
with several change descriptions representations inserted
into a special header region at the top of the view. These
describe inconsistencies between this view and other, modi-
fied views of the program, and also semantic errors caused
by constraint violations (e.g., same-named items). In this
example, change 32 indicates the address attribute has been
renamed to address1, change 33 indicates addition of at
tribute address2, change 36 indicates addition of a client/
supplier relationship between the customer::add_invoice
method and the invoice::create method, and change 44 in-
dicates a compilation (semantic) error due to the duplicate
descriptions at the beginning of SPE class and method im-
plementation specifications, and when developers open
such views these inconsistency presentation regions are
updated with new inconsistencies inserted after older ones.
We also allow developers to edit this text to remove incon-
sistencies they have actioned or do not want to continue to

Fig. 4. Indicating inconsistencies in graphical views.

���>DII�����'HVLJQ�&KDQJHV�MXG\@�DGG�IHDWXUH�FXVWRPHU��FDOF±ILQHV
����8QNQRZQ�PHWKRG�µFKHFN±OLPLW¶�EHLQJ�FDOOHG�LQ�FXVWRPHU��FKHFN±FU±OLPLW
���>�DQDO\VLV@�FKDQJH�DVVRFLDWLRQ�>FXVWRPHU��DFF�RI���!��DFFRXQW@�DULW\�IURP����WR���Q

Fig. 5. Textual form of a change description.



www.manaraa.com

970 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

Fig. 6. Graphical view inconsistencies.

Fig. 7. Indicating inconsistencies in textual views.



www.manaraa.com

GRUNDY ET AL.:  INCONSISTENCY MANAGEMENT FOR MULTIPLE-VIEW SOFTWARE DEVELOPMENT ENVIRONMENTS 971

see in the view. However, such inconsistencies are kept and
can still be queried for and viewed in a dialogue.

The first three of the presented inconsistencies in Fig. 7
might have been made in a graphical view and thus the
change descriptions inform the programmer of (possible)
view inconsistencies between this textual view and the
modified graphical view. Changes 32 and 33 can be auto-
matically applied by SPE to the textual view. The developer
can configure SPE to always automatically update the
view’s text to reflect such changes, rather than displaying
the change descriptions. To resolve change 36, the pro-
grammer may, at some later time, modify the cus-
tomer::add_invoice method to insert an appropriate
method call and arguments, and possibly update the cus-
tomer class so that an appropriate reference to invoice class
objects exists. It can be difficult to describe the full cause of
semantic inconsistencies, such as Change 44. Often an envi-
ronment may only inform users of the editing change(s)
that caused the inconsistency and the semantic constraint
violations detected.

An interesting use of the above technique in SPE is its ap-
plication to documentation views. SPE allows artifacts, such
as classes, to have associated documentation views describ-
ing them. Change descriptions affecting the artifact are for-
warded to the documentation views and automatically in-
serted into the view header, acting as an indicator that the
documentation may require updating to reflect the change.

6 INTERACTION WITH AND RESOLUTION OF
INCONSISTENCIES

Once developers are aware of the presence of inconsisten-
cies, they may wish to interact with inconsistency presenta-
tions or indeed resolve these inconsistencies. Interaction
may simply be clicking on an inconsistency presentation to
gain more information about it. For example, clicking on
the shaded Ok button from Fig. 4 to be shown a detailed
description of the inconsistency, like those in Fig. 5, in a
dialogue. Interaction may also include selecting inconsis-
tency presentations and requesting the environment to:
resolve them automatically; mark them as “seen”; change
the importance or other information associated with them;
move them to a history list for later action; or delete them
(i.e., the inconsistencies are tolerated). Because inconsis-
tency presentations in our systems are representations of
CPRG change description objects, providing developers
with the ability to interact with inconsistency presentations
can be seen as providing facilities to manipulate these
change descriptions. This section illustrates some of these
techniques as used in SPE, and the rationale for their choice
in different situations where developers need to interact
with inconsistency presentations.

6.1 Selection and Resolution of Inconsistencies
Many structural inconsistencies between views can be
automatically resolved by our environments. For example,
for textual and graphical views SPE can automatically ex-
pand added or hide deleted classes, methods, method ar-
guments, local variables and attributes, and can automati-
cally rename classes, methods and attributes, and change

attribute and method argument names and types. In
graphical views, SPE can automatically expand added,
change modified and hide deleted classes, class compo-
nents and interclass analysis and design relationships [27].
When structural inconsistency resolution actions are auto-
matically carried out, changed view items are highlighted
to indicate they have been modified and the actioned
change descriptions stored in a history list associated with
the view for developer perusal. When such structural
changes cannot be automatically resolved the inconsisten-
cies are presented as described in Section 5.

Developers may choose to have inconsistency presenta-
tions shown in a view or associated history list dialogue,
and not be automatically resolved by an environment. For
example, with SPE we have found developers want auto-
matic resolution when using graphical views, but with
textual views often want all inconsistencies shown in the
textual view header, whether they can be automatically
resolved by SPE or not. This is because even when appar-
ently simple graphical view analysis and design changes
are made, such as renaming attributes etc. which can be
automatically applied to some affected textual implemen-
tation code, developers like to be informed of such incon-
sistencies, and determine when they are resolved. They also
like to have both automatically resolveable and nonauto-
matically resolveable inconsistencies handled in the same
manner for textual implementation views, but prefer auto-
matically resolveable analysis and design changes to be
applied to graphical views when they are detected by SPE.
This behavior can be changed by developers if required, as
described in Section 8.

For inconsistencies that can be automatically resolved,
the user can select one or more inconsistency presentations
in a dialogue or view, issue a request to implement the
change, typically via a pull-down or pop-up menu item,
and are informed of the results. Fig. 8 shows an example of
such developer-requested automatic view inconsistency
resolution in SPE. The user has selected all of the change
descriptions in the view header and asked SPE to update
the view’s text. The first two changes can be automatically
applied by the environment and result in attribute address
being renamed to address1, and addition of attribute ad-
dress2. Both change descriptions are deleted indicating suc-
cessful update of the view. The other two changes, how-
ever, cannot be automatically applied, and the change de-
scriptions are left in the view’s text to indicate this. Updates
selected in a dialogue but which could not be successfully
applied by the environment are highlighted or shown to the
user in another dialogue.

6.2 Selection of Optional Update
Often environments can partially resolve an inconsistency, or
may determine several possible alternative approaches to
resolving it. Environments in which such partial automatic
inconsistency resolution is possible include those which inte-
grate multiple design notations, such as OO, ER, and NIAM
models [71], multiple levels of specifications, as in SPE [27],
and implementation, documentation and formal specifica-
tions [30]. Often a change made to one notation view can be
partially translated into a change in views using another no-



www.manaraa.com

972 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

tation. The user may be able to complete the translation by
choosing from a range of possible view changes.

An environment can assist in determining a partial in-
consistency resolution or a range of alternative strategies.
The environment can then make the partial change and leave
the developer to complete the resolution, or facilitate the
developer in choosing their preferred inconsistency resolu-
tion strategy. Developers should be informed that a partial
change has been made or that they need to complete a
change, using similar highlighting and presentation tech-
niques to those described in Section 5. Developers can
choose an appropriate resolution strategy, for example, via
a pop-up menu with resolution choices or by having sev-
eral alternative change descriptions presented which de-
scribe each resolution and allowing developers to select the
one they want.

Consider SPE facilitating the translation of changes be-
tween OOA and EER notations when a relationship is
added in an EER view. For example, an EER relationship is
added between customer and invoice entities, and SPE
translates this into the addition of a relationship between
customer and invoice classes in OOA/D views. However,
more information is needed in the OOA/D views: the rela-
tionship might be an association or aggregation OOA rela-
tionship (not specified in the EER view), or if it is an OOD
client/supplier relationship, it may specify a method call
between objects and thus caller/called method names and
arguments must be specified. As this information is not
specified in EER views, we chose to have SPE default the
relationship to an OOA association relationship, and let the
user refine this further by changing it to an aggregation or
client/supplier relationship by adding extra information.
SPE indicates the new relationship has been defaulted by
highlighting it, and provides a pop-up menu to allow the
user to easily change its type and add appropriate extra
information. Fig. 9 shows an example of such an interaction
with an inconsistency via optional update.

6.3 Manual Resolution of Inconsistency
Some inconsistencies between views can be presented to de-
velopers but not resolved in any way by an environment,
although the environment may suggest different ways the
developer might manually resolve them. In this situation, the
developer must manually resolve the inconsistency (which
can be quite difficult and time-consuming). Using different
highlighting techniques, our environments inform develop-
ers of the presence of such inconsistencies and may indicate
they cannot be resolved by the environment. Developers
then resolve the inconsistency manually, indicating they have
resolved it by deleting the inconsistency presentation, mov-
ing it to another history list, or associating information with
it indicating its resolution (or partial resolution).

For example, the addition of a design-level client/ sup-
plier relationship in SPE is usually implemented as a code-
level method call. Such a change cannot be automatically
implemented in a code-level textual view, as the environ-
ment does not know the appropriate method arguments
(variables or constants) and position of the method call
within the method code. Similarly, semantic errors such as
duplicate method or attribute names, type mismatches and
the calling of nonexistent methods in other classes all re-
quire developers to take some appropriate action to correct
the problem. Fig. 10 shows an example of this manual in-
consistency resolution to resolve a simple semantic incon-
sistency in a class definition view.

6.4 Other Interactions with Inconsistencies
In addition to resolving inconsistencies, users can interact
with inconsistency representations in other ways. An envi-
ronment can add interaction “hot-spots” to highlighted
inconsistencies, providing access to a more complete de-
cription of the change in a dialogue or pop-up menu, or
display the view whose update caused the inconsistency.
Developers can also be provided with a mechanism to an-
notate an inconsistency themselves, to move it or copy it to
other inconsistency recording groups, or to delete it (i.e.,
tolerate the inconsistency). We have found that providing

Fig. 8. Automatic resolution of view inconsistency under developer control.



www.manaraa.com

GRUNDY ET AL.:  INCONSISTENCY MANAGEMENT FOR MULTIPLE-VIEW SOFTWARE DEVELOPMENT ENVIRONMENTS 973

inconsistency presentation selection facilities in views and
dialogues, or even pop-up menus associated with incon-
sistency presentations, effectively supports such developer
and inconsistency interactions.

For example, Fig. 11 shows an SPE change history where
the developer can select inconsistencies and ask for their
affect to be undone/repeated (if structural changes), ask for
more detailed information to be displayed, annotate the
inconsistency, or delete it from the list. Developers may
even create their own “user defined” inconsistencies and
add them to the list. These do not necessarily represent a
view inconsistency, but rather serve as user-defined docu-
mentation, perhaps describing the effect of a group of lower
level changes which have been made. Such user defined
change descriptions are associated with specific software
components, and, like change descriptions representing
structural and semantic inconsistencies are propagated to
other views of these components. They also serve a useful

purpose in supporting context-dependent communication
in cooperative environments, allowing cooperating users to
interact by “messages” sent via the change description
mechanism [27], [29].

7 HANDLING INCONSISTENCIES DURING
COLLABORATIVE SOFTWARE DEVELOPMENT

Computer-Supported Cooperative Work (CSCW) systems
may use a multiview editing approach to sharing and
modifying information [38], [53], [59]. Inconsistencies be-
tween views are often difficult to resolve, as developers
may share and modify different versions of the same view
in incompatible ways, and may concurrently modify views
at different levels of abstractions. We have used the tech-
niques described in Sections 3, 4, and 5 to support a range
of inconsistency management techniques for collaborative
software development [30].

Fig. 9. Selection of optional update to fully resolve an inconsistency.

Fig. 10. Manual resolution of inconsistency.



www.manaraa.com

974 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

Fig. 11. Example of a user-defined change description from SPE.

7.1 Inconsistencies Durng View Version Merging
CPRG-based environments support the creation and shar
ing of multiple alternate versions of views i.e., copies of a
view which can be asynchronously modified by developers
and then merged to produce a consistent, shared software
specification. While alternate versions of a view are being
modified independently, inconsistencies between these
views may easily result. For example, a class method modi-
fied by one developer may be deleted or renamed by an-
other. We use the CPRG change description storage mecha-
nism to construct “deltas” between view versions, i.e., se-
quences of changes made by developers to different alter-
nate versions of a view. Developers may then combine
these sequences of view modifications by actioning each
change in turn on the orginal version of a view. The nonse-
quential undo/redo facility supported by CPRG change
descriptions is used to support this. Structural inconsisten-
cies may occur when some of the modifications made by
one developer are incompatible with those of another.
Similarly, semantic constraint violations may be present in
the alternate view versions being merged, or may be pres-
ent in the new version resulting from the merging process.
Both structural and semantic constraints resulting from
version merging can be presented to developers using the
techniques of Section 5, and developers may resolve these
inconsistencies using the techniques of Section 6.

An example from SPE is shown in Fig. 12, where two
developers have independently modified two alternate ver-
sions of an SPE design diagram, and these changes have
been merged to produce a new version of the view which
tries to incorporate all of these changes. The developer do-
ing the merging repeatedly selects some or all of the change
description presentations for each view, and asks for them
to be actioned on the new version being created (using the
“Redo” button). In this example, two structural inconsis-
tencies and a semantic inconsistency have been detected
during this process, and these inconsistencies have been
presented to the developer in the bottom dialogue.

7.2 Inconsistencies During Synchronous View
Editing

Often developers wish to synchronously or semisynchro-
nously edit software specification views, particularly those
at a high level of abstraction such as analysis and design
views. We can use the inconsistency presentation and inter-
action techniques of Sections 4 and 5 to allow developers to
see and act upon the presence of inconsistencies introduced
by another developer editing a shared view or a related
view. Inconsistencies can be annotated with the name of the
developer causing the inconsistency, and presented to users
in views, pop-up menus and dialogues as appropriate.
Automatically resolved inconsistencies can be stored for



www.manaraa.com

GRUNDY ET AL.:  INCONSISTENCY MANAGEMENT FOR MULTIPLE-VIEW SOFTWARE DEVELOPMENT ENVIRONMENTS 975

perusal by other developers, and automatically modified
view items highlighted. We have found assigning colors to
each developer to indicate who has last changed what to be
useful. Inconsistencies which cannot be automatically re-
solved are presented to developers, and an appropriate
resolution strategy negotiated using annotation of change
descriptions, textual chats and/or audio conferencing.

Fig. 13 shows an example of semisynchronous editing in
SPE utilizing inconsistency presentation and interaction
techniques. When user “rick” edits his version of the OOA
view at the top, changes are propagated to user “john’s”
environment (a screen dump from which is in Fig. 13). In-
consistencies introduced by Rick’s editing are shown in
dialogues and in textual views. John can configure. his en-
vironment to automatically apply structural inconsistencies
to his views. If desired, he could select inconsistency pres-
entations and ask SPE to apply them (if possible), or could
negotiate about the inconsistencies presented with Rick.
Synchronous collaboration is also supported by SPE; when-
ever one user changes a shared view, other users synchro-
nously editing see the view updated. Collaborating devel-
opers do not get to judge whether or not they want incon-
sistencies resolved in different ways with synchronous ed-
iting, and need to negotiate closely with collaborators to
ensure all agree on changes made and any inconsistency
resolution techniques used. As SPE associates groups of all
inconsistencies and changes made with corresponding
views and repository components, developers can peruse
these histories when necessary, and interact with them to
reverse or repeat historical modifications and to track long-
term inconsistencies.

7.3 Process-Guided Inconsistency Management
Version editing and merging supports quite loose collabo-
rative software development, whereas synchronous and
semisynchronous editing support more tightly-coupled
work. We have found that additional process support for
group work is also an advantage, enabling inconsistencies
generated by multiple developers to be annotated with pro-
cess stage information and to be grouped by process stage
and/or developer causing the inconsistencies. This annota-
tion and grouping of inconsistencies by process stage al-
lows developers to more effectively manage a large number
of inconsistencies between multiple views of software
specifications. We found that simply grouping inconsisten-
cies by software component or view alone did not scale up
for multiple developers working on large projects, as de-
velopers often had insufficient information about why in-
consistencies had occurred. They also want to view incon-
sistencies indexed not solely by view or software compo-
nent, but by the same task in which they are introduced
(i.e., those occurring during the same enacted software pro-
cess model stage).

Our environments support the guidance of software de-
velopment by the use of Serendipity process models. Seren-
dipity, if in use, is sent change descriptions by environments
like SPE, and annotates these change descriptions with in-
formation about the enacted software process stage for the
developer causing inconsistencies to arise. These inconsis-
tency representations are also grouped with the enacted pro-
cess stages to give an orthogonal view of work to the stan-
dard CPRG component- and view-centered model.

Fig. 12. Version merging and presentation of merge conflicts via change descriptions.



www.manaraa.com

976 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

8 CONFIGURING INCONSISTENCY MANAGEMENT
BEHAVIOR

While inconsistency management strategies as outlined in
Sections 4, 5, and 6 may be hard-coded into CPRG-based
environments, they may not always match the tool users’
requirements. This is especially true when multiple devel-
opers are involved on a complex project and the way differ-
ent kinds of inconsistencies are managed evolves over time.
Environments handling inconsistencies in inappropriate
ways may hinder rather than assist software developers.
Ideally, therefore, developers need ways of configuring the
inconsistency management techniques they employ. Devel-
opers may wish to extend the inconsistency detection
schemes used by an environment, indicating additional
kinds of structural changes they want propagated between
software specification views and specifying additional se-
mantic constraints on software specifications. They may
want to change the ways in which inconsistencies that have
been detected are presented to them. Similarly, they may
wish to have inconsistencies stored in specific places for
later perusual, have inconsistencies resulting from other
developers’ work forwarded to them, or to have their envi-
ronment carry out specified operations when specific kinds
of inconsistencies are detected, to automatically resolve
inconsistencies or manage them differently.

For example, when using SPE and Serendipity, structural
and semantic inconsistencies are grouped by software com-
ponent and enacted process model stages. However, devel-
opers may wish to group some inconsistencies in different
ways. They may also wish to be informed or have a new
inconsistency resolution strategy applied when specific
kinds of inconsistencies are detected.

To support developer configuration of inconsistency
management in Serendipity, we have developed VEPL, a
special-purpose visual event handling language [34]. We
have since generalized this language for use in all JCom-
poser-generated systems [33]. The event handling language
provides users of CPRG-based environments a flexible
mechanism for extending the environment behavior by:
specifying new semantic constraints and structural change
propagation mechanisms; detecting certain kinds of incon-
sistencies which should be acted upon; grouping and pre-
senting inconsistencies in various ways; and automatically
performing developer-specified actions when inconsisten-
cies are detected. Inconsistency management strategies can
be specified in JComposer using VEPL and thus generated
environments have this behavior hard-coded. Users can
also utilize a form of VEPL at run-time, i.e., when using a
generated environment, to dynamically reconfigured. in-
consistency management behavior.

Fig. 14 shows a simple example of a Serendipity visual
event-handling model being used to detect and then act
upon an inconsistency occurring in SPE. The rectangles are
“filters” which take change descriptions and pass on those
that match user-specified criteria. The ovals are “actions”
which perform simple or complex operations upon receipt of
change descriptions (usually from filters). In this example,
the development team have determined that multiple in-
heritance should not be permitted for a particular design.
When this VEPL specification detects a developer attempting
to use this construct in an SPE view, the change is automati-
cally aborted and the developer informed why this was
done. The change is then automatically aborted and the de-
veloper informed why this was done. The simple conceptual
nature of Serendipity’s filter and action event-handling

Fig. 13. Semisynchronous view editing via change description broadcasting.



www.manaraa.com

GRUNDY ET AL.:  INCONSISTENCY MANAGEMENT FOR MULTIPLE-VIEW SOFTWARE DEVELOPMENT ENVIRONMENTS 977

model was designed to allow end-users of our environments
to easily extend their behavior, rather than having to use
complex, low-level textual event handling code.

The provision of these configuration facilities has inter-
esting implications for collaborative software development.
For example, two developers may be collaborating by
sharing different versions of a view, but they may specify
different filter and actions for the view i.e., different incon-
sistency management strategies. This may mean changes or
inconsistencies made by one developer are not not detected
and presented to the other developer. There are a variety of
ways to address this problem. Developers can be informed
when other developers change the inconsistency manage-
ment behavior of their environments, as the addition, dele-
tion or modification of filters and actions are themselves
documented by change descriptions. Alternatively, addi-
tional filters and actions can be specified by project leaders
which constrain the degree of configuration allowed by
members of a project team, by constraining the use of filters
and actions. In SPE, we document the configuration of in-
consistency management by recording filter and action
component modifications in Serendipity, and leave it to the
project team to negotiate about how inconsistency man-
agement configuration should be handled.

An additional benefit of filters and actions is that they
support loose collaborative development without necessi-
tating the use of defined software process models. For ex-
ample, Serendipity can be used with SPE to specify incon-
sistency management strategies for multiple developers,
but without using its software process modeling and en-
actment facilities. As a codified software process is not
used, inconsistencies are not annotated with process stage
information nor grouped by process stage. However, filters

and actions could be defined to, for example, detect when
another developer modifies an abstract specification and to
inform other developers of this.

9 EXPERIENCE AND EVALUATION

We have deployed the inconsistency management tech-
niques described in the previous sections in the develop-
ment of a wide range of software development tools. Some
examples of these application domains include:

•� object-oriented software development [27], including
integrated analysis, design, code, Object-Z formal
specification, and documentation views

•� collaborative software development tools, including
asynchronous and synchronous editors [30] and proc-
ess modeling and enactment [34]

•� integrated EXPRESS-G graphical and EXPRESS tex-
tual views [3] for product modeling applications

•� integrated OOA/D, EER, and NIAM graphical design
tools, with textual relational database views [71], and
method engineering facilities via process models and
event handling configuration [32]

•� integrated graphical and textual specification views
for graphical user interface development [29]

•� visual programming systems, including visual tool-
abstraction [28], user interface [39], and programming
systems [48].

While most of these systems have been built using the
MViews framework, it takes considerable amount of effort
for other developers to build MViews-based tools, due to
the complexity of its OO framework. MViews-based tools
are also difficult to integrate with third-party systems, and

Fig. 14. An example of constraining SPE via a Serendipity VEPL view.



www.manaraa.com

978 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

suffer from performance and “scaling-up” problems [30].
We have built JComposer itself, an ER modeler, and a Ser-
endipity-II prototype using JComposer, which has signifi-
cantly improved the ability of tool developers to quickly
design and build tools which use our inconsistency man-
agement techniques. JComposer environments are also
easier to integrate with third-party tools, as they have a
more readily extensible Java Beans-based component im-
plementation.

Our MViews-based environments have been deployed
for use on small academic software development projects,
and many have been deployed for larger student software
development. For example, SPE has been used to facilitate
multiple student OO software analysis, design and docu-
mentation using its integrated tools. Serendipity has been
used by academics and students to describe and enact a
wide variety of software and business process models.
While MViews-implemented environments have provided
inadequate performance and tool integration support for
full-scale deployment, we are currently completing the
JViews-implemented JComposer and Serendipity-II for use
on a “real” multiple person software development project.
Usability studies are to be conducted on these tools, in ad-
dition to file management, communication and visualiza-
tion tools we have been developing, to assess how well they
contribute to inconsistency management for multiple per-
son and multiple view software development.

Based on development and use of these environments,
we have found that CPRG change descriptions provide an
adequate representational mechanism for all inconsistencies
we have needed to deal with in these problem domains.
The CPRG change propagation and storage mechanisms,
and the ability to embody structural and semantic incon-
sistency detection mechanisms in CPRG components and
relationships, have also all proven to be suitable for the in-
consistency management needs in our tools.

Users of our multiple-view editing tools like having
view inconsistencies representations to see and interact
with [27], [29], as these give users immediate feedback on
the accuracy and consistency of their views. The presence of
inconsistency presentations also assists users in determin-
ing where in the view inconsistencies exist and how to be-
gin resolving them. For both system development and
maintenance we have found the SPE-style approach of pre-
senting and allowing interaction with inconsistencies in
appropriate views to better support incremental design and
code changes than separated reverse engineering and
change merging tools. Environment implementers can
choose between unobtrusive techniques to inform users of
view inconsistencies, such as auto-expansion and high-
lighting, and presenting change description representations
in dialogs immediately when a view is selected. We have
found that it is often useful to present change descriptions,
or highlight affected view components, even when incon-
sistencies have been automatically resolved, allowing de-
velopers to confirm a correct modification has been made.
Environment implementers must, however, be careful not
to choose an inappropriate way of presenting or interacting
with inconsistencies. For example, if a view is not used for
some time, or a view is often affected by many other view
updates, automatic expansion of change description repre-

sentations into the view can result in large numbers of
change descriptions, and users can become confused. It is
more appropriate in these situations to highlight affected
view components and indicate that change descriptions can
be browsed in a dialogue or displayed by interaction with
the inconsistency presentations.

We have found that for inconsistency management tech-
niques to be most effective, developers need to be provided
with appropriate inconsistency interaction techniques. This is
essential for structural inconsistency presentations that can
be automatically resolved by the environment, and for incon-
sistencies which can be partially resolved or for which multi-
ple resolution strategies exist. Developers should be able to
easily select an appropriate automatic full or partial resolu-
tion strategy, otherwise they become frustrated at being pre-
sented with inconsistencies but without what they see as
“obvious” resolution strategies. The ability to request infor-
mation about inconsistency presentations, and to move be-
tween inconsistent views by selecting presentations, are im-
portant for developers to effectively navigate multiple, in-
consistent views. Similarly, the ability to annotate inconsis-
tency presentations, add user-defined “inconsistencies,” and
to move, delete or change the importance level of inconsis-
tencies all foster a sense of inconsistencies which can be ma-
nipulated. Developers build a mental model of “interactable”
inconsistencies in our environments due to the way incon-
sistencies are presented and able to be manipulated, so envi-
ronments should wherever possible support this model.

We have found our presentation and interaction tech-
niques have worked well for small environments with rela-
tively simple views, but also scale up for larger environ-
ments with complex views and multiple users. Inconsis-
tency presentation and interaction techniques help to foster
effective synchronous and asynchronous collaborative de-
velopment with multiple views. The use of Serendipity to
annotate inconsistencies with process model stage informa-
tion, and to group inconsistencies by stage rather than arti-
fact, has proven a major enhancement over simply broad-
casting user name-annotated inconsistencies.

Some of our earlier environments suffered from provid-
ing insufficiently powerful configuration facilities [27], [34].
Both Serendipity and JComposer provide visual languages
to allow end users to configured their own inconsistency
management behavior. This allows software developers to
specify the inconsistency detection, recording, presentation,
monitoring and interaction techniques appropriate for dif-
ferent kinds of software artifacts and for different parts of
their software process, alleviating many of the problems
encountred in our environments without such facilities.
Users of our environments have found the ability to tailor
inconsistency management, even in basic ways, assists in
making environments more effective [36].

10 SUMMARY

Our experiences with handling inconsistency management
in software development environments has indicated the
need for:

•� a flexible model for detecting, representing, storing,
and propagating the wide range of inconsistencies



www.manaraa.com

GRUNDY ET AL.:  INCONSISTENCY MANAGEMENT FOR MULTIPLE-VIEW SOFTWARE DEVELOPMENT ENVIRONMENTS 979

that can occur, and which enables these inconsistency
representations to be easily augmented with extra in-
formation, categorized and grouped as necessary

•� a software architecture which efficiently realizes this
inconsistency management model, and support tools
which assist in the construction of environments util-
izing this model

•� a range of inconsistency querying, presentation and
interaction techniques allowing users of these envi-
ronments to ask for and/or see inconsistencies which
affect views they are working with, and which enable
them to monitor and/or resolve such inconsistencies
in the most appropriate ways for the kind of view and
the developer’s preferences

•� provision of multiuser capabilities allow inconsisten-
cies which affect several developers to be managed,
and configuration capabilities allowing developers
and development teams to control inconsistency de-
tection, storage, propagation, presentation and inter-
action/resolution.

We have developed a software architecture which repre-
sents inconsistencies as “change description” objects.
Change descriptions are propagated between multiple-view
representations with inconsistencies being detected if
structure changes cannot be automatically applied by envi-
ronments, semantic constraints are violated, or multiple-
developer interference occurs. Environments built using
our architecture and associated support tools allow incon-
sistencies to be presented in a variety of ways. Augmenta-
tion of inconsistency presentations with enacted process
model information assists developers to group inconsisten-
cies and understand the reasons for their existence. Some
inconsistency presentations can be interacted with to re-
solve the inconsistency or gain further information about
them. Our environments provide mechanisms for develop-
ers to configure inconsistency detection, storage, presenta-
tion and to some degree interaction, allowing developers to
choose the most suitable approach to inconsistency man-
agement for different artifacts, tools and process stages. We
have demonstrated the usefulness of our diverse inconsis-
tency management approaches through the development
and use of various exemplar systems.

We are continuing the development of JComposer sys-
tems with improved abstractions for representing con-
straints, event handling and interoperation with third-party
tools. We are also continuing the development of inconsis-
tency management facilities, such as improved support for
tracking, prioritizing and monitoring change descriptions
which represent structural and semantic inconsistencies. Im-
provements to the JComposer icon renderings will allow us
to present inconsistencies and allow developer interaction
with inconsistencies in a wider range of ways. We are also
working on utilizing our inconsistency management ap-
proaches with a wide range of third-party tools, via Java
Beans and Active X interfaces. This will make environments
utilizing our approaches more organisationally feasible for
large-scale software development. We are continuing the
development of the Serendipity process modeling environ-
ment, including capabilities to manage histories of inconsis-
tencies and anticipate trajectories (i.e., future) of inconsisten-

cies. This will provide developers with semiautomated man-
agement facilities for inconsistencies for large scale software
process enactment which uses knowledge about previous
inconsistencies to predict possible future inconsistencies.
More sophisticated inconsistency analysis techniques would
be useful in grouping and perhaps automatically actioning
inconsistencies in many of our environments [56].

ACKNOWLEDGMENTS

The authors gratefully acknowledge the many helpful
comments of the anonymous reviewers on earlier drafts of
this paper.

REFERENCES

[1]� R.A. Altmann, A.N. Hawke, and C.D. Marlin, “An Integrated
Programming Environment Based on Multiple Concurrent
Views,” Australian Computer J., vol. 20, no. 2, pp. 65–72, May 1988.

[2]� R.W. Amor and J.G. Hosking, “Mappings: The Clue in an Inte-
grated System,” Proc. First European Conf. Product and Process Mod-
eling in the Building Industry, pp. 117–123, Rotterdam, The Neth-
erlands, A.A. Balkema, 1995.

[3]� R. Amor, G. Augenbroe, J.G. Hosking, W. Rombouts, and J.C.
Grundy, “Directions in Modelling Environments,” Automation in
Construction, no. 4, pp. 173–187, 1995.

[4]� F. Arefi, C.E. Hughes, and D.A. Workman, “Automatically Gener-
ating Visual Syntax-Directed Editors,” Comm. ACM, vol. 33, no. 3,
pp. 349–360, Mar. 1990.

[5]� J. Arlow, S. Bandinelli, W. Emmerich, and L. Lavazza, “Fine
Grained Process Modelling: An Experiment at British Airways,”
Software Process—Improvement and Practice, vol. 3, no. 2, pp. 105–
131, 1997.

[6]� G. Avrahami, K.P. Brooks, and M.H. Brown, “A Two-View Ap-
proach to Constructing User Interfaces,” ACM Computer Graphics,
vol. 23, no. 3, pp. 137–146, 1990.

[7]� B. Backlund, O. Hagsand, and B. Pherson, “Generation of Visual
Language-Oriented Design Environments,” J. Visual Languages
and Computing, vol. 1, no. 4, pp. 333–354, 1990.

[8]� S. Bandinelli, A. Fuggetta, and C. Ghezzi, “Process Model Evolu-
tion in the SPADE Environment,” IEEE Trans. Software Eng., vol.
19, no. 12, pp. 1,128–1,144, Dec. 1993.

[9]� S. Bandinelli, E. DiNitto, and A. Fuggetta, “Supporting Coopera-
tion in the SPADE-1 Environment,” IEEE Trans. Software Eng., vol.
22, no. 12, pp. 841–865, Dec. 1996.

[10]� N. Belkhatir, J. Estublier, and W.L. Melo, The Adele/Tempo Experi-
ence, Software Process Modelling & Technology, pp. 187–222. Re-
search Studies Press, 1994.

[11]� I.Z. Ben-Shaul, G.T. Heineman, S.S. Popovich, P.D. Skopp, A.Z.
amd Tong, and G. Valetto, “Integrating Groupware and Process
Technologies in the Oz Environment,” Proc. Ninth Int’l Software
Process Workshop: The Role of Humans in the Process, pp. 114–116,
Airlie, Va., IEEE CS Press, Oct. 1994.

[12]� M.H. Brown, “Zeus: A System for Algorithm Animation and
MultiView Editing,” Proc. IEEE Symp. Visual Languages, pp. 4–9,
IEEE CS Press, 1991,

[13]� Cayenne Software, ObjectTeam—Collaborative Object-Oriented De-
velopment, http://www.cayennesoft.com/objectteam/, June 1998.

[14]� R.B. Dannenberg, “A Structure for Efficient Update, Incremental
Redisplay and Undo in Graphical Editors,” Software-Practice and
Experience, vol. 20, no. 2, pp. 109–132, Feb. 1990.

[15]� J. Ebert, R. Suttenbach, and I. Uhe, “Meta-CASE in Practice: A
Case for KOGGE,” Proc. Ninth Int’l Conf. Advanced Information Sys-
tems Eng., pp. 203–216, Barcelona, Spain, Lecture Notes in Com-
puter Science 1250, Springer-Verlag, 1997.

[16]� W. Emmerich, “An Architecture for Viewpoint Environments
Based on OMG/CORBA,” Proc. Int’l Workshop Multiple Perspec-
tives in Software Development, Viewpoints‘96, pp. 207–211, San Fran-
cisco, ACM Press, 1996.

[17]� W. Emmerich, “Tool Specification with GTSL,” Proc. Eighth Int’l
Workshop Software Specification and Design, pp. 26–35, Schloss Ve-
len, Germany, IEEE CS Press, 1996



www.manaraa.com

980 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

[18]� W. Emmerich, “CORBA and ODBMSs in Viewpoint Development
Environment Architectures,” Proc. Fourth Int’l Conf. Object-
Oriented Information Systems, pp. 347–360, Springer-Verlag, 1997.

[19]� W. Emmerich, J. Arlow, J. Madec, and M. Phoenix, “Tool Con-
struction for the British Airways SEE with the O2 ODBMS,” The-
ory and Practice of Object Systems, vol. 3, no. 3, pp. 213–231, 1997.

[20]� C. Fernström, “ProcessWEAVER: Adding Process Support to
UNIX,” Proc. Second Int’l Conf. The Software Process: Continuous
Software Process Improvement, pp. 12–26, Berlin, Germany, IEEE CS
Press, Feb. 1993.

[21]� A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh,
“Inconsistency Handling in Multiperspective Specifications,”
IEEE Trans. Software Eng., vol. 2, no. 8, pp. 569–578, Aug. 1994.

[22]� A. Finkelstein, G. Spanoudakis, and D. Till, “Managing Inconsis-
tencies,” Joint Proc. SIGSOFT’96 Workshops, pp. 172–174, San Fran-
cisco, ACM Press, Oct. 1996.

[23]� A. Fuggetta, “A Classification of CASE Technology,” Computer,
vol. 26, no. 12, pp. 25–38, Dec. 1993.

[24]� E. Gamma, R. Helm, R. Johnston, and J. Vlissides, Design Patterns.
Addison-Wesley, 1994.

[25]� T.C.N. Graham, “Viewpoints Supporting the Development of
Interactive Software,” Proc. Viewpoints’96, pp. 263–267, San Fran-
cisco, ACM Press, 1996.

[26]� J.C. Grundy, “Multiple Textual and Graphical Views for Interac-
tive Software Development Environments,” PhD thesis, Univ. of
Auckland, Dept. of Computer Science, June 1993.

[27]� J.C. Grundy, J.G. Hosking, S. Fenwick, and W.B. Mugridge, con-
necting the pieces, Visual Object-Oriented Programming. ch. 11,
Manning/Prentice Hall, 1995.

[28]� J.C. Grundy and J.G. Hosking, “ViTABaL: A Visual Language
Supporting Design By Tool Abstraction,” Proc. IEEE Symp. Visual
Languages, pp. 53–60, Darmsdart, Germany, IEEE CS Press, Sept.
1995.

[29]� J.C. Grundy, J.G. Hosking, and W.B. Mugridge, “Supporting
Flexible Consistency Management via Discrete Change Descrip-
tion Propagation,” Software–Practice & Experience, vol. 26, no. 9,
pp. 1,053–1,083, Sept. 1996.

[30]� J.C. Grundy and J.G. Hosking, “Constructing Integrated Software
Development Environments with MViews,” Int’l J. Applied Soft-
ware Technology, vol. 2, nos. 3/4, pp. 133–160, 1996.

[31]� J.C. Grundy, J.G. Hosking, and W.B. Mugridge, “Low-Level and
High-Level CSCW in the Serendipity Process Modelling Envi-
ronment,” Proc. OZCHI’96, pp. 69–77, Hamilton, New Zealand,
IEEE CS Press, Nov. 1996.

[32]� J.C. Grundy and J.G. Venable, “Towards an Integrated Environ-
ment for Method Engineering,” Proc. IFIP 8.1/8.2 Working Conf.
Method Engineering, pp. 26–28, Atlanta, Chapman-Hall, Aug. 1996.

[33]� J.C. Grundy, W.B. Mugridge, and J.G. Hosking, “A Java-Based
Toolkit for the Construction of MultiView Editing Systems,” Proc.
Second Component Users Conf., SIGS Publications/CUP, Munich,
Germany, July 1997.

[34]� J.C. Grundy, and J.G. Hosking, “Serendipity: Integrated Environ-
ment Support for Process Modeling, Enactment and Work Coor-
dination,” Automated Software Eng., vol. 5, no. 1, pp. 27–60, Jan.
1998.

[35]� J.C. Grundy, J.G. Hosking, and W.B. Mugridge, “Static and Dy-
namic Visualization of Software Architectures for Component-
based Systems,” Proc. SEKE’98, San Francisco, KSI Press, pp. 426–
433, June 1998.

[36]� J.C. Grundy, J.G. Hosking, and W.B. Mugridge, “Support for End
User Specification of Workflows, Work Coordination and Tool
Integration,” J. End User Computing, vol. 10, no. 2, pp. 38–48, May
1998.

[37]� R.O. Hart and G. Lupton, “DECFUSE: Building A Graphical
Software Development Environment from Unix Tools,” Digital
Technical J., vol. 7, no. 2, pp. 5–19, 1995.

[38]� R.D. Hill, T. Brinck, S.L. Rohall, J.F. Patterson, and W. Wilner, “The
Rendezvous Architecture and Language for Constructing Multi-
User Applications,” ACM Trans. Computer-Human Interaction, vol.
1, no. 2, pp. 81–125, June 1994.

[39]� J.G. Hosking, S. Fenwick, W.B. Mugridge, and J.C. Grundy,
“Cover Yourself with Skin,” Proc. OZCHI’95, pp. 101–106, Wol-
longong, Australia, Nov. 1995.

[40]� Interactive` Development Environments Inc., Software thru Pic-
tures 2.4.2, 1997. http://www.ide.com/Products/SMS/sms.html

[41]� Interactive Software Engineering Inc., Eiffel CASE, 1998. http://
www.eiffel.com/ products/case/intex.html

[42]� G.E. Kaiser and D. Garlan, “Melding Software Systems from Re-
usable Blocks,” IEEE Software, vol. 4, no. 4, pp. 17–24, July 1987.

[43]� S. Kelly, K. Lyytinen, and M. Rossi, “Meta Edit+: A Fully Config-
urable MultiUser and MultiTool CASE Environment,” Proc.
CAiSE’96, pp. 1–21, Heraklion, Crete, Greece, Lecture Notes in
Computer Science 1080, Springer-Verlag, May 1996,.

[44]� J.D. Kiper, “A Framework for Characterisation of the Degree of
Integration of Software Tools,” J. Systems Integration, vol. 4, pp. 5–
32, 1994.

[45]� R.E. Krant, and L.A. Streeter, “Coordination in Software Devel-
opment,” Comm. ACM, vol. 38, no. 3, pp. 69–81, Mar. 1995.

[46]� G.E. Krasner and S.T. Pope, “A Cookbook for Using the Model-
View-Controller User Interface Paradigm in Smalltalk-80,” J. Ob-
ject-Oriented Programming, vol. 1, no. 3, pp. 8–22, 1988.

[47]� U. Leonhardt, A. Finkelstein, J. Kramer, and B. Nuseibeh, “De-
centralised Process Modelling in a Multiple-Perspective Devel-
opment Environment,” Proc. 17th Int’l Conf. Software Eng., Seattle,
Washington, IEEE CS Press, 1995.

[48]� P. Lyons, C. Simmons, and M. Apperley, “HyperPascal: Using
Visual Programming to Model the Idea Space,” Proc. 13th New
Zealand Computer Soc. Conf., pp. 492–508, Auckland, Aug. 1993.

[49]� B. Magnusson, M. Bengtsson, and L. Dahlin, “ An Overview of
the Mjølner/ORM Environment: Incremental Language and
Software Development,” Proc. TOOLS‘90, pp. 635–646, Prentice
Hall, 1990.

[50]� B. Magnusson, U. Asklund, and S. Minör, “Fine-Grained Revision
Control for Collaborative Software Development,” Proc. ACM
SIGSOFT Conf. Foundations of Software Eng., pp. 7–10, Los Angeles
Calif., Dec. 1993.

[51]� C. Marlin, B. Peuschel, M. McCarthy, and J. Harvey, “MultiView-
Merlin: An Experiment in Tool Integration,” Proc. Sixth Conf. Soft-
ware Eng. Environments, IEEE CS Press, 1993.

[52]� R. Medina-Mora, T. Winograd, R. Flores, and F. Flores, “The Ac-
tion Workflow Approach to Workflow Management Technology,”
Proc. CSCW’92, pp. 281–288, ACM Press, 1992.

[53]� S. Meyers, “Difficulties in Integrating MultiView Editing Envi-
ronments,” IEEE Software, vol. 8, no. 1, pp. 49–57, Jan. 1991.

[54]� B.A. Myers, “Garnet: Comprehensive Support for Graphical,
Highly Interactive User Interfaces,” Computer, vol. 23, no. 11, pp.
71–85, 1990.

[55]� B.A. Myers, “The Amulet Environment: New Models for Effective
User Interface Software Development,” IEEE Trans. Software Eng.,
vol. 23, no. 6, pp. 347–365, June 1997.

[56]� B. Nuseibeh, “Towards a Framework for Managing Inconsistency
Between Multiple Views,” Proc. Viewpoints’96, pp. 184–186, San
Francisco, ACM Press, 1996.

[57]� B. Peuschel, W. Schäfer, and S. Wolf, “A Knowledge-Based Soft-
ware Development Environment Supporting Cooperative Work,”
Int’l J. Software Eng. and Knowledge Eng., vol. 2, no. 1, pp. 76–106,
1992.

[58]� W.L. Poon and A. Finkelstein, “Consistency Management for
Multiple Perspective Software Development,” Proc. Viewpoints’96,
pp. 192–196, San Francisco: ACM Press, 1996.

[59]� M. Ratcliffe, C. Wang, R.J. Gautier, and B.R. Whittle, “Dora—A
Structure Oriented Environment Generator,” IEEE Software Eng. J.,
vol. 7, no. 3, pp. 184–190, 1992.

[60]� Rational Corp., “RationalRose 4.0,” http://www.rational.com/, 1997.
[61]� S.P. Reiss, “PECAN: Program Development Systems that Support

Multiple Views,” IEEE Trans. Software Eng., vol. 11, no. 3, pp. 276–
285, 1985.

[62]� S.P. Reiss, “Working in the GARDEN Environment for Conceptual
Programming,” IEEE Software, vol. 4, no. 11, pp. 16–26, Nov. 1987.

[63]� S.P. Reiss, “Connecting Tools Using Message Passing in the Field
Environment,” IEEE Software, vol. 7, no. 7, pp. 57–66, July 1990.

[64]� S.P. Reiss, “Interacting with the Field Environment,” Software
Practice and Experience, vol. 20, no. S1, S1/89–S1/115, June 1990.

[65]� T. Reps and T. Teitelbaum, “Language Processing in Program
Editors,” Computer, vol. 20, no. 11, pp. 29–40, Nov. 1987.

[66]� M. Roseman and S. Greenberg, “Building Real Time Groupware
with GroupKit, A Groupware Toolkit,” ACM Trans. Computer-
Human Interaction, vol. 3, no. 1, pp. 1–37, Mar. 1996.

[67]� P.G. Sorenson, P.S. Findeisen, and J.P. Tremblay, “Supporting
Viewpoints in MetaView,” Proc. Viewpoints’96, pp. 237–241, San
Francisco, ACM Press, 1996.

[68]� K.D. Swenson, R.J. Maxwell, T. Matsumoto, B. Saghari, and K.
Irwin, “A Business Process Environment Supporting Collabora-
tive Planning,” J. Collaborative Computing, vol. 1, no. 1, 1994.



www.manaraa.com

GRUNDY ET AL.:  INCONSISTENCY MANAGEMENT FOR MULTIPLE-VIEW SOFTWARE DEVELOPMENT ENVIRONMENTS 981

[69]� TeamWARE Inc., TeamWARE Flow, 1996. http://www.teamware.us.com/
products/ flow/

[70]� G. Valetto and G.E. Kaiser, “Enveloping Sophisticated Tools into
Computer-Aided Software Engineering Environments,” Proc.
IEEE Seventh Int’l Workshop Computer-Aided Software Eng., pp. 40–
48, July 1995.

[71]� J.R. Venable and J.C. Grundy, “Integrating and Supporting Entity
Relationship and Object Role Models,” Proc. 14th Object-Oriented
and Entity Relationship Modelling Conf., pp. 318–328, Gold Coast,
Australia, Lecture Notes in Computer Science, Springer-Verlag,
1995.

[72]� A.I. Wasserman and P.A. Pircher, “A Graphical, Extensible, Inte-
grated Environment for Software Development,” SIGPLAN No-
tices, vol. 22, no. 1, pp. 131–142, Jan. 1987.

[73]� J. Welsh, B. Broom, and D. Kiong, “A Design Rationale for a Lan-
guage-Based Editor,” Software-Practice and Experience, vol. 21, no.
9, pp. 923–948, 1991.

[74]� M.R. Wilk, “Change Propagation in Object Dependency Graphs,”
Proc. TOOLS US‘91, pp. 233–247. Prentice Hall, Aug. 1991.

John Grundy holds the BSc (honors), MS, and
PhD degrees, all in computer science from the
University of Auckland. He is currently senior
lecturer in computer science at the University of
Waikato. His research interests include software
engineering environments, software process
technology, visual languages and program visu-
alization, component-based software architec-
tures, and computer-supported cooperative
work.

John Hosking received the BSc and PhD de-
grees from the University of Auckland. He is
currently a senior lecturer in computer science
at the University of Auckland, where he has
been employed since 1985. His research inter-
ests include software engineering, visual lan-
guages, constraint languages, and software
development environments. Dr. Hosking is a
member of the IEEE and the IEEE Computer
Society.

Warwick (Rick) B. Mugridge received his PhD
degree in computer science from the University
of Auckland in 1990. Dr. Mugridge is a senior
lecturer in computer science at the University of
Auckland, New Zealand. His research interests
include visual languages, software engineering,
and meta-tools for software development and
collaboration. Dr. Mugridge is a member of the
IEEE Computer Society.


